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Abstract

In this paper a variational formulation of smooth particle hydrodynamics for dynamic problems is presented. The

resulting equations treat the continuum as a Hamiltonian system of particles where the constitutive equation of the

material is represented via an internal energy term. In the case of fluids the internal energy term is a function of density.

The new formulation introduces a variable smoothing length for the evaluation of density and incorporates a consistent

approach for the treatment of rigid boundaries. The method overcomes some problems faced by standard SPH

approaches that use constant smoothing lengths and provides a variational context for a variable smoothing length for-

mulation. A numerical example shows the capabilities of this novel formulation.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Twenty-five years have lapsed since the introduction of smooth particle hydrodynamics (SPH) as a pow-

erful mesh free technique for the solution of non-axisymmetric phenomena in astrophysics [1,2]. It soon
developed into a robust technique that could deal with complicated physics [3,4]. There have been many

applications of the method in other fields including engineering, with applications such as metal forming

[5] and the simulation of impact and mould filling casting processes. SPH has also been applied to free sur-

face flows [6,7].

SPH is a Lagrangian particle method that does not require a grid to evaluate spatial derivatives. It is

quite a simple but robust technique. However, there are certain problems that arise due to the nature of
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the interpolation, e.g., tension instability [8–10]. Several of these problems have been studied by a num-

ber of researchers see for instance the papers by Monaghan [4,8], Benz [10], Randles and Libersky [11],

Gray et al. [12]. The convergence of the SPH technique to the continuous model has been studied by

Vila [19].

The standard SPH method uses a constant smoothing length (h) for the particles. However, the need for
a variable smoothing length appears as a consequence of the physics of certain problems such as the expan-

sion of a very compressible material. If such problems are treated with a constant h approach, after certain

analysis time, very few neighbour particles will be found for a particle that at the beginning of the analysis

was well covered. On the other hand, problems like contraction of a compressible material would result in a

large number of neighbour particles, resulting in expensive computations. Algorithms to vary the smooth-

ing length have been proposed in the past [10].

The aim of this paper is to introduce a novel formulation of the SPH method based on a variable

smoothing length (variable-h) within a variational framework. In this way, the continuum is represented
by a discrete set of particles each with a given mass and velocity. The constitutive representation of the

material is achieved via an internal energy term, which for adiabatic reversible problems is simply a

function of the particle positions. This leads to the continuum being modelled as a Hamiltonian system

of particles where the equations of motion of each particle are given by the classical Lagrange equa-

tions. This procedure of deriving the governing equations bypasses the standard differential equations

of equilibrium and, more importantly, ensures that the constants of motion such as linear and angular

momentum are preserved. For fluids the internal energy term is derived from the traditional SPH equa-

tion for the density.
Fahrenthold and Koo [17] have presented a Hamiltonian particle hydrodynamics method, in which

the physical system is modelled using a system of �n� thermomechanically interacting physical particles.

As the authors mention in their report, their method differs from SPH methods as there is no

interpolation or weighted residual solution techniques involved and it relies exclusively on energy

concepts.
2. Smooth particle hydrodynamics

In the SPH method, a function f(x) and its gradient $f are approximated in terms of values of the func-

tion at a number of neighbouring particles and a kernel function W(x � xb) = Wb(x,hb) as [5],
fhðxÞ ¼
XM
b¼1

V bfbW bðx; hbÞ and rfhðxÞ ¼
XM
b¼1

fbgbðxÞ; ð1Þ
where h is the smoothing length and determines the support of the kernel (see Fig. 1). Vb denotes a tributary

volume associated to particle b. In the standard SPH method, the gradient vectors g are simply
gb = Vb$Wb.

In order to ensure linear consistency (i.e., the interpolation and gradients of constant and linear func-

tions are exactly evaluated) some correction techniques have been introduced (see for instance [7]).

2.1. Density evaluation in standard SPH

In the standard SPH formulation, the mass of a particle is smoothed over a sub-domain of radius 2h,

where h the so-called smoothing length. In order to understand this, consider a system of particles with
masses mI distributed over a domain as shown in Fig. 1. The discrete system of particles has a density dis-

tribution of the form



Fig. 1. SPH density interpolation.
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q̂ðxÞ ¼
XN
I

mIdðx� xIÞ; ð2Þ
where d is the Dirac�s delta and N is the number of particles in the system. In order to reconstruct a con-

tinuum density interpolation, the kernel smoothing concept can be applied to the discrete density (2) is

smoothed or filtered using a convolution integral with a kernel function W as,
qðxÞ ¼
R
X q̂ðx0ÞW xðx0Þ dx0R

X W xðx0Þ dx0 ; ð3Þ
where W(x,x 0,h) = Wx 0(x,h) has a compact support of radius 2h and a continuous bell shape shown in Fig.

1 and X represents the entire domain. Substituting Eq. (2) into above expression and noting the Dirac�s
delta properties gives
qI ¼
P

JmJW IðxJ ; hIÞR
X W IðxJ ; hIÞ dV

; ð4Þ
where J are the neighbour particles for particle I. The integral in the denominator in Eq. (4) has usually a

value of 1 since the kernel function is scaled to yield a unit integral. However, this is not the case for par-

ticles close to a boundary, as explained in the following section.
3. Correction function cI

In the standard SPH formulation and in the absence of boundaries the denominator integral in Eq. (4)

is assumed to be equal to one. This is no longer valid for particles that are within a distance to a rigid

boundary that is less than 2h for that particle (see Fig. 2).



Fig. 2. Particle near a rigid boundary.
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Defining a function gamma [13] as follows:
cIðxI ; hIÞ ¼
Z
X
W Iðx; hIÞ dV . ð5Þ
Then Eq. (4) becomes
qI ¼
1

cI

X
J

mJW IðxJ ; hIÞ. ð6Þ
For simple boundaries the function cI can be expressed in terms of the distance yI to the rigid boundary,

e.g., for a plane,
yI ¼ ðxI � x0Þ � n; ð7Þ

where n is the unit vector normal to the boundary and x0 is any point on the boundary.

3.1. Density evaluation – variable-h

The evaluation of the density using a constant smoothing length is a normal practice in SPH, this can
lead to resolution problems if the length scale of the problem changes considerably [10]. In the case of fluids

with certain compressibility, for instance, a case of uniform expansion or contraction of the system of par-

ticles (see Fig. 3), the smoothing length needs to vary in order to get a realistically simulation of the

problem.

In the case of an uniform expansion (Fig. 3(a)), the particle in the centre would eventually have no neigh-

bours around it. And in the case of a contraction case (Fig. 3(b)), all the particles would eventually be with-

in 2h for the particle in the centre and according to Benz [10], this would case the breakdown of the method.

Different approaches have been proposed in order to estimate the smoothing length from previous values
of density or increasing it until a certain number of neighbours have been found. However, those ap-

proaches can lead to particle clumping [10].

Several attempts have been made by SPH practitioners to overcome these difficulties such as the use of

symmetrised forms of the kernel functions and smoothing lengths [10].

In general, h must change in such a way that the number of particles contributing to the integrals remain

constant, or
qhdm ¼ constant ¼ q0h
dm
0 . ð8Þ



Fig. 3. Situations in which the use of constant h leads to poor results: (a) uniform expansion, (b) uniform contraction.
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This gives an equation for the instantaneous smoothing length h as
h ¼ q0

q

� �1=dm

h0; ð9Þ
where dm is the number of space dimensions. It is important to note that if the above equation is enforced
strictly, density and smoothing length are dependent on each other.

In this case the density equation (6) is an implicit non-linear equation for qI due to the dependency of hI
on qI. Furthermore, the value of cI will also be affected by changes in qI. In order to solve this difficulty, Eq.

(9) is typically enforced in a relaxed way by taking density at a previous time-step.

In the following sections a more consistent approach is presented in order to solve the system of non-

linear equations defined by (6) and (9) and to obtain the associated variational consistent forces that emerge

as a consequence of changes in h.
4. Rate of change of density with variable-h

In order to derive the variational consistent forces and to develop a simple algorithm for the solution of

Eqs. (6)–(9), it is first convenient to obtain the variation of density that emerges from changes in particle

positions. For this purpose, differentiating the density equation gives
qIDcI ½dv� þ cIDqI ½dv� ¼
X
J

mJ
dW I

drIJ
DrIJ ½dv� þ

dW I

dhI
DhI dv½ �

� �
. ð10Þ
In order to solve this equation for DqI[dv] it is first necessary to evaluate the derivatives of the correction

function cI and other derivatives such as: dW I
drIJ

, Dh[dv], DcI[dv] and DrIJ[dv].
The derivative of first term in Eq. (10) is found from Eq. (6) as
DcI ½dv� ¼
c0I
hI
½n � dvI � þ

c0I yI
hIqI dm

DqI ½dv�; ð11Þ
where c0 ¼ dc
dy. From Eq. (8), we obtain the following expressions for the derivative of the smoothing length,
hdmDq½dv� þ qdmh
dm�1Dh½dv� ¼ 0; ð12Þ

Dh½dv� ¼ � h
dm

Dq½dv�. ð13Þ
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The kernel function is a function f of the non-dimensional distance between two particles and in general has

the form
W IðxJ ; hIÞ ¼
1

hdm
f

rIJ
hI

� �
; ð14Þ
where rIJ is the distance between particle I and its neighbour J, given by
rIJ2 ¼ ðxJ � xIÞ � ðxJ � xIÞ. ð15Þ

Hence, then the derivative of the kernel function is
dW I

drIJ
¼ 1

hdmþ2
I

f 0 rIJ
hI

� �
; ð16Þ
where f 0 ¼ df
dðr=hÞ and differentiating using the chain rule, the derivative of the kernel function with respect to

the smoothing length is
dW
dhI

¼ �dm

hdmþ1
I

f
rIJ
hI

� �
� rIJ
hdmþ2
I

f 0 rIJ
hI

� �
¼ � 1

hI
dmW I xJ ; hIð Þ þ rIJ

dW 1

drIJ

� �
. ð17Þ
Finally, differentiating Eq. (15) gives
DrIJ ½dv� ¼
1

rIJ
ðxJ � xIÞ � ðdvJ � dvIÞ. ð18Þ
Substituting Eqs. (13), (17) and (18) into Eq. (10) yields:
qIDcI ½dv� þ cIDqI ½dv� ¼
X
J

mJ
dW I

drIJ
ðxJ � xIÞ � ðdvJ � dvIÞ

� �

þ
X
J

mJ
1

hI
dmW IðxJ ; hIÞ þ rIJ

dmW I

drIJ

� �" #
hI

qIdm
DqI dv½ �; ð19Þ

qIDcI ½dv� þ
aI

qIdm

� �
DqI ½dv� ¼

X
J

mJ
dW I

drIJ

1

rIJ
ðxJ � xIÞ � ðdvJ � dvIÞ

� �
; ð20Þ
where
aI ¼ �
X
J

mJrIJ
dW I

drIJ
. ð21Þ
Finally, substituting Eq. (11) into Eq. (20) yields after simple algebra
c0I yI
hIdm

þ aI
qI dm

� �
DqI ½dv� ¼

X
J

mJ
dW I

drIJ

1

rIJ
ðxJ � xIÞ � ðdvJ � dvIÞ

� �
� qIc

0
I

hI
½n � dvI � ð22Þ
or
DqI ½dv� ¼ bI

X
J

mJrW IðxJ ; hIÞ � ðdvJ � dvIÞ �
bIqIc

0
I

hI
½n � dvI �; ð23Þ
where
bI ¼
c0I yI
hIdm

þ aI
qI dm

� ��1

. ð24Þ
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Noting that taking dvJ = vJ and dvI = vI, then Eq. (24) gives the rate of density as:
_qI ¼ qI
bI

qI

X
J

mJrW IðxJ ; hIÞ � ðvJ � vIÞ �
bIc

0
I

hI
½n � vI �

" #
. ð25Þ
Note that this equation is very similar to the standard SPH density rate equation except for the boundary

term
bI c

0
I

hI
½n � vI � and the correction term bI

qI
which is due to changes in h.

The equations derived above will now be used to obtain the equilibrium equations of a continuum rep-

resented by a system of SPH particles with variable resolution length.
5. Dynamic problems: governing equations

Consider a system of particles in space, with positions defined by the vector xI. Each particle carries a

mass mI, and has velocity vI and an acceleration defined by aI as shown in Fig. 4. In SPH, the position of the

particles is followed in time and the particles are not considered discrete bodies but points of the contin-

uum. In order to derive the equations of motion within a variational framework, it is first necessary to de-

fine the total potential energy and the total kinetic energy of the continuum.
Assuming a reversible process and using the Euler–Lagrange equation of motion [14], the equilibrium

equation for the system of particles can be expressed as
d

dt
oL
ovI

� oL
oxI

¼ 0; I ¼ 1; . . . ;N ; ð26Þ
where L = K � p is the kinetic potential or Lagrangian, K is the total kinetic energy and the total potential

energy of the system of particles has gravitational and internal components pg and pint, respectively.
Noting that p is only a function of nodal positions, the equilibrium equation becomes
d

dt
oK
ovI

� oK
oxI

¼ opg

oxI
� opint

oxI
; I ¼ 1; . . . ;N . ð27Þ
5.1. Kinetic energy

Considering a system of SPH particles representing a continuum, the total kinetic energy K can be rea-

sonably approximated as [15],
Fig. 4. Discretisation of the continuum as a system of particles.
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K ¼ 1

2

XN
I¼1

mIvI � vI ; ð28Þ
where mI is the mass for particle I and vI is the velocity vector for that particle.

5.2. Potential energy

If all external forces of the system are conservative, it is possible to define an external potential energy,

for instance for the case of gravitational forces, as
pgðxIÞ ¼ �
XN
I¼1

mIðg � xIÞ; ð29Þ
where g is the gravity acceleration vector and xI is the position vector for particle I.

5.3. Internal energy potential

The internal potential energy represents the recoverable energy stored in the continuum. In general, it is

possible to express this total internal energy, as particle contributions, as
pintðxIÞ ¼
XN
I¼1

mIpðqIÞ; ð30Þ
where p(q) represents the internal energy per unit mass of the material and is given by the equation of state.
Relating p(q) and U(J), the energy stored per unit initial volume, via J ¼ q0

q , the internal energy can be ex-

pressed as
U ¼ q0pðqÞ. ð31Þ

The pressure p, which is taken as positive in compression, is given by
p ¼ � dU
dJ

¼ �q0

dp
dJ

¼ �q0

dp
dq

dq
dJ

; ð32Þ
therefore
p ¼ q2 dp
dq

ð33Þ
which is the standard energy equation for a perfect fluid.

5.4. Equilibrium equations

Eq. (27) can also be expressed in the standard Newton�s second law form as,
mIaI ¼ FI � TI ; ð34Þ

where FI are the external forces of the system and TI the internal forces of the system of particles, defined as
FI ¼ � opg

oxI
; ð35Þ

TI ¼
opint

oxI
. ð36Þ
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The evaluation of this last term (36) requires the constitutive definition of the material in question but pro-

vided that the internal forces are evaluated in accordance with the above equation, the resulting expression

will be consistent with the preservation of linear and angular momentum [7].
5.5. External forces: non-dissipative case

The external forces FI of the system are defined by the body forces acting on each particle. For the case

of a gravitational field, the external forces can be evaluated as
FI ¼ � opg

oxI
¼ mIg. ð37Þ
As it is noted, the external forces are given exclusively by the self-weight of the particles and they do not

take into account any losses due to boundary friction.
6. Internal forces

The internal forces should also consider the case in which the particle is close to a rigid boundary and the
variable smoothing length.

In order to derive the variable-h SPH equations for the internal forces let us introduce the notation:
Dpint½dv� ¼
X
I

TI � dvI . ð38Þ
The left-hand side of this equation becomes
Dpint½dv� ¼
X
I

mI
pI
q2
I

DqI ½dv�. ð39Þ
Substituting Eq. (23) into this last equation gives
Dpint½dv� ¼
X
I

mI
dp
dqI

bI

X
J

mJrW IðxJ ; hIÞ � ðdvJ � dvIÞ �
bIqIc

0
I

hI
½n � dvI �

" #
. ð40Þ
After simple algebra the internal forces emerge as:
TI ¼
X
J

mImJ
bJpJ
q2
J

rW J ðxI ; hJ Þ �
bIpI
q2
I

rW IðxJ ; hIÞ
� �

� mIbIpIc
0
I

hIqI
n. ð41Þ
The previous equation gives the internal forces for each particle considering the case of variable smoothing

length. This is particularly important if the flow is highly compressible.

The last term in Eq. (41) can be interpreted as the boundary contact force, BI:
BI ¼ bIn; bI ¼
mIbIpIc

0
I

hIqI
ð42Þ
which is responsible for preventing the penetration of particles into the rigid boundaries [13].
6.1. Viscosity

In the context of the proposed variational formulation, viscosity can be introduced with a new term in
the equation of motion via a dissipative potential [15]:
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d

dt
oL
ovI

� oL
oxI

¼ � opdis

ovI
; I ¼ 1; . . . ;N . ð43Þ
This dissipative potential will be expressed as the sum of viscous potentials per unit mass w, which are func-

tions of the rate of deformation tensor d, as
pdis ¼
XN
I

mIwðdÞ; 2d ¼ rvþrvT. ð44Þ
Let us consider the case of a Newtonian fluid with kinematic viscosity m = l/q, the viscous potential is then
wðdÞ ¼ mðd0 : d0Þ; d0 ¼ d� 1

3
ðtrdÞI ð45Þ
the viscous stresses can be obtained by differentiation to give
rvis ¼ q
ow
od

¼ 2ld0. ð46Þ
For the evaluation of d 0, the gradient of velocity needs to be obtained using Eq. (1) as
rvI ¼
X
J

vJ � gJðxIÞ. ð47Þ
The internal forces due to viscous effects can be evaluated after simple algebra and included in the equation

of motion (34). The internal viscous forces term is
Tvis
I ¼ opdis

ovI
¼
X
J

mJ
svisI

qI

� �
gIðxJ Þ. ð48Þ
The resulting equation of motion for the system of particles is now
mIaI ¼ FI � TI � Tvis
I . ð49Þ
The variable-h SPH method proposed in this paper can also be applied for cases in which the smoothing

length h may not vary in space and time due to the nature of the flow, e.g., flow through a pipe or enclosed

cavity. For such cases the method will converge much faster for each particle. However, the use of the var-

iable-h approach allows for changes in such cavities to be captured in a better way. For instance, for the
case of an increase in the diameter of a pipe, the hmight need to be enlarged for some particles and decrease

for the case of a reduction in diameter. Some simulations of die castings, using a constant h variational

SPH, have been reported by Kulasegaram et al. [13] in which the treatment of solid walls is similar to

the one presented in this paper. The method can be extended to simulations in three dimensions by defining

an appropriate function cI.
7. Implementation of the method

7.1. Correction functions cI ; c
0
I

In order to evaluate the contact forces and the density when there are rigid boundaries within the radius

of the smoothing length for a particle, the gamma correction function and its derivative are not equal to

zero and therefore they must be calculated. Kulasegaram et al. [13] have proposed a method based on a

numerical approximation of the integral given in Eq. (4). Using spline curve fitting the expressions for

cI ; c
0
I are (for 2-D case):
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cI ¼ 1.0þ ð0.0625� 0.0531eÞðe� 2.0Þ3

c0I ¼ ð0.2937� 0.2124eÞðe� 2Þ2

)
if 0 6 e 6 2.0;

cI ¼ 1.0; c0I ¼ 0.0 if e > 2.0;

ð50Þ
where e ¼ y
hI
. Fig. 5 shows the plot of these functions.

7.2. Numerical evaluation of the density equation

Eq. (9) is highly non-linear in qI, and in order to solve it, a Newton–Raphson solution procedure can be
used. Let us define a residual R(qI) as:
RðqIÞ ¼ cIqI �
X
J

mJW IðxJ ; hIðqIÞÞ ffi 0 ð51Þ
and considering as well that h is a function of the density:
hIðqIÞ ¼ hð0ÞI

qð0Þ
I

qI

 !1=dm

; ð52Þ
where h(0) is the initial iterative value for h, qð0Þ
I the initial guess for qI. In order to solve the density equa-

tion, a Newton–Raphson procedure can be used by the iteration of the following equation:
qðkþ1Þ
I ¼ qðkÞ

I � RðkÞ
I

dR
dq

� �k
I

; ð53Þ
where
dR
dq

¼ cI þ qI
dcI
dh

dh
dq

�
X
J

mJ
dW I

dh
dh
dq

. ð54Þ
Fig. 5. Plots of the correction functions.
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After substituting the expressions for the derivatives, Eq. (54) becomes:
dR
dq

¼ c0I yI
hIdm

þ aI
qIdm

þ cI �
1

qI

X
J

mJW IðxJ ; hIðqIÞÞ. ð55Þ
Hence the iterative procedure is defined by
qðkþ1Þ
I ¼ qðkÞ

I 1� bk
I R

k
I

bk
I R

k
I þ qk

I

 !
. ð56Þ
As a first guess, Eq. (25) can be integrated in time giving:
qð0Þ
I;nþ1 ¼ qI ;ne

Dtð _qI=qI Þ; ð57Þ
where Dt is the current time-step. In this way, for small timesteps this time integration should be very accu-

rate and hence the number of Newton–Raphson iterations will be very small.

7.2.1. Convergence

In order to stop the Newton–Raphson iterative procedure, a tolerance that is within the machine preci-

sion must be defined. Convergence is achieved when
jRðkþ1Þ
I j
qðkÞ
I

6 tol. ð58Þ
Typical values in a double precision machine are: tol = 1E � 15, which is usually achieved within a few

iterations.

The use of this methodology has a higher computational cost than other non-iterative procedures for the

evaluation of density. However, the improvements in the accuracy of the solution can make it cost-effective

since fewer particles are needed and, in some cases, the solution obtained using standard SPH techniques is

inaccurate, as it will be shown in the first example of next section.
7.3. Update of particle positions

The positions of the particles are updated by integrating Eq. (34) in time. For instance, using an explicit

leap-frog scheme the new position of the particles is given by
v
ðnþ1=2Þ
I ¼ v

ðn�1=2Þ
I þ Dt anI ; ð59Þ

xnþ1
I ¼ xn

I þ Dtnþ1v
nþ1=2
I ; ð60Þ
where
Dt ¼ 1

2
Dtn þ Dtnþ1
� �

. ð61Þ
Due to the explicit nature of the scheme, the Courant–Friedrichs–Lewy (CFL) stability criteria must be sat-

isfied. This implies that the time step size must be less than:
Dt ¼ CFL
hmin

maxðcI þ kvIkÞ
; 0 6 CFL 6 1.0; ð62Þ
where cI is the wave speed of propagation or speed of sound for particle I.
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8. Numerical examples

In order to show the improvements of the method in comparison of constant h SPH approaches, three

simple example showing the case in which a water dam breaks. The fluid is modelled using the Shallow

Waters assumptions within a SPH approach, which leads to a two-dimensional model in which the density
will change significantly due to the changes in h.

The two-dimensional density q (mass per unit projected horizontal are) and the height ht of the column

of water are related as
q ¼ htqw; ð63Þ
where qw is the constant density of the fluid.
8.1. 1-D breaking dam

For the case of a infinite breaking-dam of initial height h0, an analytical solution exists. A dam of certain

depth and infinite transversal dimension brakes at time t = 0 s. This problem is clearly of interest in a num-

ber of real situations, ranging from the catastrophic flood following the collapse of a dam, to the operation

of sluice gates in an irrigation channel.

An analytical solution exits for the problem and is presented in [18]. The results provided by the variable-

h SPH method are compared to those obtained with the analytical solution for the position of the front, the
depth at the initial gate and velocity at the front.

For the numerical simulation, only a strip of 1 m was considered, as shown in Fig. 6. On the

right-hand side of the dam, at x = 2 m there is a gate that is instantaneously removed at time

t = 0.0 s.

A total of 6601 particles were used, simulating the solid wall on the left with a symmetry condition

in the fluid. According to the analytical solution, the depth of the water and the original position of the

gate should remain constant and equal to 4/9h0 until the point where the wave that travels backwards

reaches the solid wall at x = 0.0 m. This occurs approximately at t = 0.65 s. In this case, the depth of
the fluid should be h = 0.444 m, until t = 0.64 s. The results are shown in Fig. 7, compared to the value

predicted by the analytical solution. In the same manner, the velocity of the fluid at the point of the

gate (x = 2.0) should remain constant and equal to 2/3c0, where c0 ¼
ffiffiffiffiffiffiffi
gh0

p
¼ 3.1314 m s�1 (see Fig. 8).

Fig. 9 shows the comparison of the profile of the dam at t = 0.6 s compared to the analytical solution.

As we can observe from these figures, the variable-h SPH shows good agreement with analytical

solutions for an infinite breaking dam.
Fig. 6. Dimensions of the channel and the dam.



Fig. 9. Profile of the solution at t = 0.60 s.

Fig. 7. Variable-h SPH results vs. analytical solution for depth at x = 2.0 m.

Fig. 8. Velocities at x = 2.0 m.
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8.2. Circular dam

8.2.1. Case a: Collapse of a circular dam on dry surface

In this case, the dam is a cylinder and the initial radius of the suffers an expansion due to the dam break-

ing. With constant h the particles near the perimeter of the dam will get fewer neighbours as the simulation
progresses. This will lead to poor interpolations of those particles and consequently to non-accurate results.

Using the variable-h approach described in this paper for the density and internal forces, the problem

can be solved more accurately, as it is shown in Fig. 10(b), comparing the results for the same time for both

approaches.

In Fig. 11 the results for the simulation of the collapse of a circular dam of r = 0.5 m and initial height

h = 1.0 m are shown. It is important to note that even after an expansion of 7 times the initial radius the

simulation does not break-up, as it is the case for constant h SPH (Fig. 10(a)).
8.2.2. Case b: Collapse of a circular dam on a wet surface

Consider a column of water of radius R1 = 0.5 m with an initial water depth h1 = 1.0 m. The column of

water represents a circular dam enclosed by an infinitely thin circular wall. This dam is located inside an-

other circular dam of radius R2 = 5 m for which the depth is h2 = 0.5 m. This example studies the wave

propagation phenomena associated with the sudden collapse of the interior dam wall. At time t = 0.0 s

the wall of the small dam collapses, causing a wave propagation throughout the bigger dam. The initial

conditions for the problem are
h ¼ 1.0 m if x2 þ y2 6 R2
1;

h ¼ 0.5 m if R2
1 < ðx2 þ y2Þ 6 R2

2;

vx ¼ vy ¼ 0.0.
The interior dam is assumed to collapse instantaneously. In Figs. 12 and 13, the wave propagation pattern

is shown for different time steps. Note the smooth boundary due to the correction factor as well as the
smooth wave patterns. This problem is simulated using only 7987 particles. The results compare well with

similar simulations [16].
Fig. 10. (a) Standard SPH for a collapsing column of water, (b) variational SPH.



Fig. 11. Variable-h SPH for a collapsing column of wate at times t = 0, 0.10, 0.40 and 0.60 s, respectively.

Fig. 12. Travelling waves at times t = 0.0, 0.20. 0.40 and 0.80 s. Note the smooth boundary.
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Fig. 13. Top view at times t = 0.0, 0.20. 0.40 and 0.80 s. Only 11,469 particles were used.
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9. Concluding remarks

This paper has introduced a formulation of the SPH equations for dynamic problems that allows for the

use of variable smoothing length and introduces some corrections for the case of rigid boundaries. The re-

sults show the improvements of the method over traditional SPH schemes. This new methodology over-

comes problems faced by SPH when the nature of the problem makes the number of neighbouring

particles vary significantly in time. Since the energy terms are independent of rigid body rotations and

translations, this formulation ensures the preservation of physical constants of the motion such as linear

and angular momentum for the non-dissipative case.

Although the iterative procedure to evaluate the density is more computationally expensive than the
non-iterative techniques, the results show that its performance is better in terms of accuracy. In general,

the time spent in each time step is in the order of 2–3 times of that in a non-iterative procedure. However,

this technique also allows the use of fewer particles since the variable-h somehow adapts according to the

problem�s nature.
This variational SPH method is not restricted to fluids and can also be applied to solid mechanics

problems.
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